

math 4/7
April 28

Growth in $SL_2(\mathbb{F}_p)$

THEOREM 6.1 (Product Theorem for $SL_2(\mathbb{F}_p)$; Helfgott version). *There exists $k, \delta > 0$ such that for any p and any subset $A \subset SL_2(\mathbb{F}_p)$ generating $SL_2(\mathbb{F}_p)$ as a group, one of the following holds*

$$|A^{(3)}| \geq |A|^{1+\delta} \text{ or } (A \cup A^{-1} \cup \{\text{Id}_2\})^{(k)} = SL_2(\mathbb{F}_p).$$

Used Rep of $SL_2(\mathbb{F}_p)$ + Gowers.

Growth in $SL_2(\mathbb{F}_p)$

k is any finite field

THEOREM 6.2 (Product Theorem for $SL_2(\mathbb{F}_p)$; approximate subgroup version). *Let $K \geq 2$, there exists an absolute constant $C > 0$ such that given any finite field k and any K -approximate subgroup $A \subset G = SL_2(k)$ generating G , one has either*

- (1) $|A| \leq K^C$,
- (2) $|A| \geq |G|K^{-C}$.

By Gowers, if (2) hold $\Rightarrow A^{(3)} = SL_2(\mathbb{F}_p)$

Larsen-Pink inequalities (for subgroups)

SL_2 is an example of a linear algebraic gp.
Basics on Algebraic Geometry

Algebraic Varieties: $k = \text{field}$ \bar{k} an algebraic closure of k

$n \geq 1$ Consider the affine space \bar{k}^n
is equipped with the Zariski topology

the closed sets in this top are the sets of
the shape: $\bar{I} \subset \bar{k}[x_1, \dots, x_n]$ an ideal

$$V_{\bar{I}}(\bar{k}) = \left\{ \underline{x} \in \bar{k}^n \text{ st } \forall P \in \bar{I} \quad P(\underline{x}) = 0 \right\}$$

Example: $n=1 \quad P \in \bar{k}[x] \quad \bar{I} = \bar{k} \cdot P$

$$V_{\bar{I}}(\bar{k}) = \left\{ x \in \bar{k} \quad P(x) = 0 \right\} = \text{root}_P(\bar{k})$$

- $n=4$

$$\left\{ (a, b, c, d) \in \bar{k}^4 \text{ st } ad - bc = 1 \right\} = V_{\bar{k}(AD-BC)}(\bar{k})$$

in $\bar{k}[A, B, C, D]$.

- Such a closed set

$V_{\bar{k}}(\bar{k})$ is called an affine algebraic subvariety of \bar{k}^4 .

Rmg: $\bar{I} \subset \bar{k}[x_1, \dots, x_n]$ is finitely generated

$V_{\bar{I}}(\bar{k})$ is defined as the zero set of
a finite family of polynomials.

- Given $V = V_{\bar{I}}$ some alg subvariety
if the generator of \bar{I} have degree
 $\leq D$ we say that V has degree $\leq D$

- if \bar{I} is generated by at most C polynomials of degree $\leq C$ we say that V has complexity $\leq C$.

Connected component of V : V decomposes as a finite disjoint union of connected subvarieties: the connected component of V

and their number depend only on
the complexity of V .

- Irreducible components of V :

V is irreducible if it is not the union of
two proper subvarieties.

Any variety is a union of a unique finite

set of irreducible subvarieties called the irreducible components of V .

- if V is irreducible: its dimension is the maximal length of a chain of inclusions

$$\emptyset \subsetneq V_0 \subsetneq V_1 \subsetneq \dots \subsetneq V_D = V$$

where the V_i are irreducible.

Ex: $\dim \bar{k}^n = n$

$$\dim V_{AD-BC} = 3 = 4-1.$$

- Suppose one starts from $I \subset k[x_1, \dots, x_n]$
one can define

$$V_I(k) = \{ \underline{x} \in k^n \text{ st } \forall P \in I \quad P(\underline{x}) = 0 \}$$

and for any $k' > k$

$$V_I(k') = \{ \underline{x} \in k'^n \text{ st } \forall P \in I \quad P(\underline{x}) = 0 \}$$

$$k' = \bar{k} \quad V_I(\bar{k}) = V_{\bar{I}}(\bar{k}) \quad \bar{I} = \bar{k} \cdot I$$

We then say that V is defined over k and in fact one can define

$V(K)$ for K any commutative k -algebra.
 $\{x \in K^n \mid \forall P \in I \quad P(x) = 0_K\}$

Linear algebraic Groups

A linear algebraic gp is a subvariety of the affine space $M_n(\bar{k}) \cong \bar{k}^{n^2}$ with is a gp for multiplication of matrices.

Ex: $SL_2(\bar{k}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\bar{k}) \text{ st } ad - bc = 1 \right\}$

$$GL_n(\bar{k}) = \{ g \in M_n(\bar{k}) \mid \det g \neq 0 \}$$

to see $GL_n(\bar{k})$ as a closed subvariety
 we see it in $M_n(\bar{k}) \times \bar{k} \cong \bar{k}^{n^2+1}$

$$GL_n(\bar{k}) := \{ (g, t) \in M_n(\bar{k}) \times \bar{k} \text{ st } \det g \cdot t^{-1} = g \}$$

$$g \in GL_n(\bar{k}) \rightarrow (g, (\det g)^{-1}) \in M_n(\bar{k}) \times \bar{k}$$

Def: a linear algebraic gp $G(\bar{k})$ is a
subvariety of $GL_n(\bar{k}) \subset M_n(\bar{k}) \times \bar{k}$
with is a subgp of $GL_n(\bar{k})$.

THEOREM 6.7 (Larsen-Pink). *Let \bar{k} be algebraically closed and $G(\bar{k})$ be a connected simple algebraic group.*

For any $D \geq 1$ there exists $C = C(D, \dim G) > 0$ such that the following holds.

For any finite subgroup $A \subset G(\bar{k})$, either A is contained in a proper algebraic subgroup $H(\bar{k}) \subset G(\bar{k})$ such that $[H : H^0] \leq C$ or for every closed algebraic subvariety $V(\bar{k}) \subset G(\bar{k})$ of degree $\leq D$, one has

$$|A \cap V(\bar{k})| \leq C |A|^{\dim V / \dim G}.$$

Structure of $SL_2(\bar{k})$

Elements: Any element of $SL_2(\bar{k})$ is annihilated by

$$P_g(x) = x^2 - \text{tr}(g)x + 1$$

$-\text{tr}(g) \neq \pm 2$ g has 2 distinct eigenvalues

$$\lambda_1 \neq \lambda_2 \in \bar{k} \quad g \text{ is conjugate to } \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

$$\lambda_1 \lambda_2 = 1$$

we know that conjugation is in $SL_2(\bar{k})$

if h is a conjugating matrix

$\det(h)^{\frac{-1}{2}} h \in SL_2(\bar{k})$ and conjugated

g to $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.

- $\text{tr}(g) = \pm 2$. $g = \pm \text{Id}_2$ (g is central)

$\{\pm \text{Id}_2\} = \mathbb{Z}_{SL_2(\bar{k})}$

$$- P_g = P_{g, \min} = X^2 \pm 2X + 1$$

g has ± 1 as unique eigenvalue

g is conjugate $\pm \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix} x \in \bar{k}$

g is called regular quasiumpotent

regular unipotent if
 $\text{tr}(g) = 2$

Subgroups: $g \in \mathrm{SL}_2(\bar{k})$ $\mathrm{SL}_2 = G$

$$\mathrm{Cent}_g(\bar{k}) = \{ h \in G(\bar{k}) \text{ st } hg h^{-1} = g \}$$

$\xrightarrow{\hspace{1cm}}$ algebraic subg of G $hg - gh = 0$

- if g is semisimple $\mathrm{Cent}_g(\bar{k})$ is conjugate to $T = \mathrm{Diag}_2(\bar{k}) = \left\{ \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \mid t \in \bar{k}^\times \right\}$

- The centralizer of a ss elements is called a maximal torus (is conjugate) to $\text{Diag}_2(\text{SL}_2)(\bar{k})$

- let $T_g = \text{maximal torus}$

the normalized of T_g

$$\text{Nor}_{T_g}(\bar{k}) = \left\{ h \in \text{SL}_2(\bar{k}) \mid h T_g h^{-1} = T_g \right\}$$

$$\text{Nor}_{T_g}(\bar{k}) = T_g \sqcup w_g T_g \text{ where}$$

$$w_g T_g w_g^{-1} = T_g \text{ and } w_g^2 = \text{Id}_2$$

$$T = \left\{ \begin{pmatrix} t & \\ & t^{-1} \end{pmatrix} \right\}$$

$$N_T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

- If g is regular unipotent

$\text{Cent}_g(\bar{k}) = \pm N_g$ where N_g is a unique unipotent subgp containing g

N_g is conjugate to

$$N = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \bar{k} \right\}.$$

$$\text{Na}_{N_g}(\bar{k}) = \left\{ h \in G(\bar{k}) \mid h N_g h^{-1} = N_g \right\}$$

$= B_g = B_{U_g}$ = is called a Borel subgroup and is conjugate

to the "Standard" Borel subgp

$$B = \left\{ \begin{pmatrix} t & x \\ 0 & t^{-1} \end{pmatrix} \mid t \in \bar{k}^*, x \in \bar{k} \right\}$$

Fractional Linear transformation

$P'(k) = \{0 \in L \subset \bar{k}^2\}$ the set of lines
in \bar{k}^2

$L = \{(x, y) \in \bar{k} \text{ st } \beta y - \alpha x = 0\}$ for
some pair $(\alpha, \beta) \neq (0, 0)$

$$L \xrightarrow[\text{slope}]{} s(L) = [\alpha : \beta] = \begin{cases} \alpha/\beta & \text{if } \beta \neq 0 \\ \infty & \text{if } \beta = 0 \end{cases}$$

$$SL_2(\bar{k}) \curvearrowright P(\bar{k}) \quad (\text{via the obvious action of } SL_2(\bar{k}) \curvearrowright \bar{k}^2)$$

$$\text{If } z = s(L) \in \bar{k} \cup \infty$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \begin{cases} \frac{az+b}{cz+d} & z \neq -\frac{d}{c} \\ \infty & z = -\frac{d}{c} \end{cases}$$

The kernel of the action is $\{\pm \text{Id}_2\}$

- A Borel subgroup is the stabilizer of a unique point $z \in \bar{k} \cup \{\infty\}$ B_z

eg: $B_\infty = \left\{ \begin{pmatrix} t & x \\ 0 & t^{-1} \end{pmatrix} \right\}.$

- A maximal torus is the point wise stabilizer
of a pair $\{z_1, z_2\}$ $z_1 \neq z_2$

eg: $\text{Diag}_2(\bar{k}) = \text{Stab}_{0, \infty}$

The normalizer of a maximal torus

T_{z_1, z_2} is the stabilizer of the set $\{z_1, z_2\}$

Special Case of LP for $SL_2(\bar{k})$

PROPOSITION 6.9 (LP for tori). *There exist a constant $C, D > 0$ such that for any finite subgroup $A \subset G(\bar{k})$ satisfying $|A| \geq D$, one of the following holds*

- For any maximal torus T ,

$$|T \cap A| \leq C|A|^{1/3}.$$

- There is a Borel subgroup B such that

$$|B \cap A| \geq C^{-1}|A|.$$

Proof: The Constant C will be determined via the proof.

Suppose \forall Borel subgp $B \in G(\bar{k})$

$$|B \cap A| < c^{-1} |A|$$

let $y \in G(k)$ and suppose $A \cap yB \neq \emptyset$

the gp $A \cap B \cong A \cap yB$ by right

translations: $g \in A \cap B$ $x \in A \cap yB$

$x = a = yb$ then

$$xg \in A \quad xg = ybg \in yB$$

$ng \in A \cap yB$.

this action is simple transitive

$$|A \cap gB| = |A \cap B| \leq c^{-1}|A|$$

Claim: $\exists g \in A$ st $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow abcd \neq 0$

the set of matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ st $abcd = 0$

is the union of B_{∞} $B_0 = nB_{\infty}$ nB_{∞} nB_0

if $C > 4$ and $|A|$ is sufficiently large

$$|A \cap (B_{x \cup} B_0 \cup w B_{x \cup} w B_0)| < |A|$$

so there exists some $g \in A$ with $abcd \neq 0$

- Up to conjugating T we may have that

$$T = \left\{ \begin{pmatrix} t^0 \\ 0 & t^{-1} \end{pmatrix} \mid t \in \bar{k}^* \right\}$$

Let $T_A = T \cap A$. \downarrow_3

To bound $|T_A|^3$ by $|A|$ it is sufficient

to produce an injective map

$$\phi: T_A \times T_A \times T_A \hookrightarrow A$$

$$(\Rightarrow |T_A|^3 = |\phi(T_A \times T_A \times T_A)| \leq |A|)$$

Write $T_A = A \cap T = \left\{ \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \mid t \in H_A \right\}$

$$H_A \subset \bar{k}^*$$

Given $t_1, t_2, t_3 \in H_A$

$$\begin{aligned} \phi(t_1, t_2, t_3) &= \begin{pmatrix} t_1 & \\ & t_1^{-1} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} t_2 & 0 \\ 0 & t_2^{-1} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} t_3 & 0 \\ 0 & t_3^{-1} \end{pmatrix} \\ &= \begin{pmatrix} t_1 & \\ & t_1^{-1} \end{pmatrix} \begin{pmatrix} a^2 t_2 + b c t_2^{-1} & a c t_2 + b d t_2^{-1} \\ a c t_2 + c d t_2^{-1} & b c t_2 + d^2 t_2^{-1} \end{pmatrix} \end{aligned}$$

$$P = \begin{pmatrix} t_1 & & \\ & t_1^{-1} & \\ & & t_1 \end{pmatrix} \begin{pmatrix} a^2 t_2 + bct_2^{-1} & act_2 + bdt_2^{-1} \\ act_2 + cdt_2^{-1} & bct_2 + d^2 t_2^{-1} \end{pmatrix} \begin{pmatrix} t_3 & 0 \\ 0 & t_3^{-1} \end{pmatrix} \in A$$

since $abcd \neq 0$ the entries of the middle matrix are zero for at most 8 values of t_2 .

Given t_2 outside these 8 values

one produce $|H_A|^2$ different elements
of A .

In addition the product of the diagonal
entries of the matrix φ are

$$* (a^2 t_2 + b c t_2^{-1})(b c t_2 + d^2 t_2^{-1})$$

\Rightarrow indep of t_1, t_3 .

If we vary t_2 the map

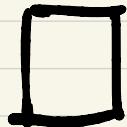
$$t_2 \rightarrow (d^2t_2 + bct_2^{-1})(bct_2 + d^2t_2^{-1})$$

take value in \bar{k} and has fiber of

size ≤ 4

One obtain $|\mathcal{H}_A|/4$ different values
for $(*)$

$$\Rightarrow |\mathcal{T}_A| = |\mathcal{H}_A| \ll |A|^{\frac{1}{3}}.$$



PROPOSITION 6.10. *There exist a constant $C, D > 0$ such that for any finite subgroup $A \subset \overline{G}$ satisfying $|A| \geq D$, one of the following holds*

- For any unipotent subgroup N ,

$$|N \cap A| \leq C|A|^{1/3}.$$

- There is a Borel subgroup B such that

$$|B \cap A| \geq C^{-1}|A|.$$

PROOF. Exercise. (hint: use also the inverse of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$)

□

LP for Conjugacy Classes

$$g \in SL_2(\bar{k})$$

$$\text{Conf}(g) = \left\{ hgh^{-1} \mid h \in SL_2(\bar{k}) \right\}$$

We have

PROPOSITION 6.11 (LP, large conjugacy classes). *There exist a constant $C, D > 0$ such that for any finite subgroup $A \subset G(\bar{k})$ satisfying $|A| \geq D$, one of the following holds*

- For any $g \in A$ regular,

$$|\text{Conj}(g) \cap A| \geq C^{-1}|A|^{2/3}.$$

- There is a Borel subgroup B such that

$$|B \cap A| \geq C^{-1}|A|.$$

Proof: (g semisimple)

PROPOSITION 6.12 (LP, small conjugacy classes). *There exist a constant $C, D > 0$ such that for any finite subgroup $A \subset G(\bar{k})$ satisfying $|A| \geq D$, one of the following holds*

- For any $g \in \mathrm{SL}_2(\bar{k})$, regular either semisimple or unipotent

$$|\mathrm{Conj}(g) \cap A| \leq C|A|^{2/3}.$$

- There is a Borel subgroup B such that

$$|B \cap A| \geq C^{-1}|A|.$$

COROLLARY 6.13. *There exist a constant $C, D > 0$ such that for any finite subgroup $A \subset G(\bar{k})$ satisfying $|A| \geq D$, one of the following holds*

- *For any $g \in A$, regular semisimple contained in the maximal torus T_g we have*

$$|T_g \cap A| \geq C^{-1}|A|^{1/3}.$$

- *There is a Borel subgroup B such that*

$$|B \cap A| \geq C^{-1}|A|.$$

COROLLARY 6.14. *There exist a constant $C, D > 0$ such that for any finite subgroup $A \subset G(\bar{k})$ satisfying $|A| \geq D$, one of the following holds*

- *For any $g \in A$, regular unipotent contained in the unipotent subgroup U_g we have*

$$|U_g \cap A| \geq C^{-1}|A|^{1/3}.$$

- *There is a Borel subgroup B such that*

$$|B \cap A| \geq C^{-1}|A|.$$

A Dichotomy

$A \in SL_2(\bar{k})$ A not roughly contained in
any Borel B .

THEOREM 6.15 (Rough description of the finite subgroups of $\mathrm{SL}_2(\bar{k})$). *Suppose that $\bar{k} = \overline{\mathbb{F}_p}$ is the algebraic closure of a finite field k .*

There exist a constant $C, D > 0$ such that for any finite subgroup $A \subset \mathrm{G}(\bar{k})$ satisfying $|A| \geq D$, one of the following holds

- *There is a finite subfield $k \supset \mathbb{F}_p$ satisfying*

$$C^{-1}|A|^{1/3} \leq |k| \leq C|A|^{1/3}$$

such that A is contained in a conjugate of $\mathrm{SL}_2(k)$ (in particular A has index $\leq C$ in that conjugate).

- *There is a Borel subgroup B such that*

$$|B \cap A| \geq C^{-1}|A|.$$

LP for AP Subgps

$k = \text{finite field } K \geq 2$

$A \subset SL_2(k)$ a K -approximate Subgrp

st $\langle A \rangle = SL_2(k)$.

We will prove versions of LP for A .

LEMMA 6.16. Let k, A as above. There exists an absolute constant $D \geq 2$ such that for any $C \geq 1$, one of the following holds

- one has $|A| \leq K^{DC}$;
- for any linear subspace $V \subset M_2(\bar{k})$ of dimension ≤ 3 such that $V \cap \mathrm{SL}_2(\bar{k})$ is a subgroup, one has

$$|A^{(2)} \cap V| \leq K^{-C}|A|.$$

R_{mq}:

LEMMA 6.17. *There exists an absolute constant D such that for any finite field k satisfying $|k| \geq D$, any subspace $V \subset M_2(\bar{k})$ of dimension $d \in \{2, 3\}$ such that $V \cap \mathrm{SL}_2(\bar{k})$ is a subgroup, then the group*

$$\{g \in \mathrm{SL}_2(k), \ gVg^{-1} = V\}$$

is a strict subgroup of $\mathrm{SL}_2(k)$.

Rmq:

