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THEOREM 6.1 (Product Theorem for SLy(F,); Helfgott version). There exists k,d > 0
such that for any p and any subset A C SLa(F,) generating SLa2(IF,) as a group, one of the
following holds

A®)] > A" or (AUAT U {1d2})® = SLa(F,).
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THEOREM 6.2 (Product Theorem for SLy(IF,); approximate subgroup version). Let K >
2, there exists an absolute constant C' > 0 su(h that given any finite field k and any K-
approximate subjroup A C G = SLay(k) generating G, one has either

(1) |4 < K¢
(2) |A] > |G|K~¢

\g)- Gowers , 1| (2) hetd = A(b)zy-q(nrp)
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THEOREM 6.7 (Larsen-Pink). Let k be algebraically closed and G(k) be a connected
simple algebraic group.

For any D > 1 there exists C = C(D,dim G) > 0 such that the following holds.

For any finite subgroup A C G(k), either A is contained in a proper algebraic subgroup
H(k) ¢ G(k) such that [H : H°] < C or for every closed algebraic subvariety V (k) C G(k)
of degree < D, one has

|Aﬂ V(E)| < C|A|dimV/dimG.



Stvachne ar SL, (& )

Elenad Ay Jm% gSL,_(lL) s ) b
’P(x). X - -ty )X +/

tv(%)f + 3 hos 20\ s{'\wﬁ\' e Wwpm

H‘i“'{e\'. ! is oowduéa.}t To (o ,\1)



wma thd oM 1§ k
'% :“S ) Cmmdbc\tt&ajlw IS‘ g g’l(‘k)
.} M& \w& MOS"V\X

24 h € SL(K ) wnd coqug ded
*he ) wd e
3 7 Ko ,\2)-

-t«(a): 7. -—"'I)
3- = =4y, ( s c@uj'/J
1,4 = 29 @) : )



rP K’Pa"\\ﬂ: X‘Li zx +|
=g % )

i pavod
(8 Mc, i‘ ah um'c\wv. z\zﬁ,«.\l :.l—

%is c.o\\,dw&w)fﬂ, ._..(' "| ) xe k.

3 g CchchA Méwpwx cfwm’siumpofw‘*'

wa\. TR po\'cul n(g
Ba



S&am‘os; ae SL,_(E) SL,_:G
’ = -
\ oyga\avan‘c Suj% g 6 8-8 ]
- .g %és %M\'s(w,& Coul (E) I's caﬁ\gat
To T- Dm%zaié(g f.,) tek



- The cw:\'va)iém. IYQSS eeuuwldﬁ IS
CM qQ m«m‘mJ Tovus { 1S coudugujé)
to Dieg, (SL)(E)

- ‘ej' Taz m&ximJ ft}LWS



R nomed; 3¢ 1T,

Na_r(lc) 7L€Sl7(h) hTaL 'E%

N@T(b‘) T LJNT wM.c.

1
386Tw’w.ﬂ



o]

vy,
- Ig q is uaJ)M_ s Pebj

curz(;)z N, aba Ny i
uw»\clvu. ngobd Sujoapcoguinig



Nois cogucali T
N i(o ) 4

_ .
Ma.N (k) 3'né‘ S(k) H\]aln Na}

0 'Bé} Bu = Isc a/e&ﬂld,&eﬂ

gdnavmf.) wwl s cbu.vﬁa]lé,



to He "Cladmd” Bl @8’0

Bfoc) 5



Fvuj'{ouaj |iwean tvauo; onhion I
(P’(ﬂsi O = ’—S:k' K Tl:{i Wes
L - 3 (;t/y)ei. 61' ‘63-— O X ;03 Xdo.

gouwne paw (oz /(’)) :'L(O/Q)



oL,
(&)
| )
2 = §( \‘ IP)([:
L)ek ){
S (6]
eti)é;ffd
<]

(2]
z:?gﬂ?
i#'a'é

c 4
cg;al
<= -
C



a.r}' 1< {iTLS
Hhe

le bonwef zf

+

o P ! 7:?91 7/
"S 8{'
Fl’“f h ; 232

x') ) j
| B”’N; +
eg



- A max l'wmp Tows is Tue Poxw\' whsc s“ajm()fgr
o o (%) 4t
Cg.: D\%Q(E) :Stxjﬂ@oo

Tta mmaﬁm a'f s Mam'»uwo Torus
Ti,,:’-’g. s the 3"«)01?@% v'r‘ﬂué‘{?j}%



spoad Com of LP fo L, (k)

PROPOSITION 6.9 (LP for tori). There exist a constant C, D > 0 such that for any finite
subgroup A C G(k) satisfying |A| > D, one of the following holds

— For any mazximal torus T,
TN Al <C|A|V3,
— There is a Borel subgroup B such that
IBNA| > C YA
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PROPOSITION 6.10. There exist a constant C, D > 0 such that for any finite subgroup
A C G satisfying |A| = D, one of the following holds

— For any unipotent subgroup N,
IN N A| < C|A|V3.
— There is a Borel subgroup B such that
IBNA|>C YAl

ProoOF. Exercise. (hint: use also the inverse of (CCL Z)) O
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PROPOSITION 6.11 (LP, large conjugacy classes). There exist a constant C, D > 0 such

that for any finite subgroup A C G(k) satisfying |A| > D, one of the following holds
— For any g € A reqular,

Conj(g) N A| > C™HAP/2,
— There is a Borel subgroup B such that
IBNA| > C7YA.

Proaé'. (3 W"“"“l'e')






PROPOSITION 6.12 (LP, small conjugacy classes). There exist a constant C, D > 0 such
that for any finite subgroup A C G(k) satisfying |A| = D, one of the following holds

— For any g € SLa(k), reqular either semisimple or unipotent
[Conj(g) N A| < C|A]*2,
— There is a Borel subgroup B such that
IBNA|>C YAl






COROLLARY 6.13. There exist a constant C, D > 0 such that for any finite subgroup

A C G(k) satisfying |A| = D, one of the following holds
— For any g € A, regular semisimple contained in the maximal torus Ty, we have

1T, N A| > C~YAIY3,
— There is a Borel subgroup B such that
|IBNA| > C71A.

COROLLARY 6.14. There exist a constant C, D > 0 such that for any finite subgroup
A C G(k) satisfying |A| = D, one of the following holds

— For any g € A, regular unipotent contained in the unipotent subgroup U, we have
U, N A| > C7 A3,
— There is a Borel subgroup B such that
IBNA|>C71A.
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THEOREM 6.15 (Rough description of the finite subgroups of SLa(k)). Suppose that

k =T, is the algebraic closure of a finite field k. B

There exist a constant C, D > 0 such that for any finite subgroup A C G(k) satisfying
|A| = D, one of the following holds

— There is a finite subfield k O ), satisfying
CHA < K] < ClA

such that A is contained in a conjugate of SLa(k) (in particular A has index < C
in that conjugate).
— There is a Borel subgroup B such that

IBNA| > C7YA.
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LEMMA 6.16. Let k, A as above. There exists an absolute constant D > 2 such that for
any C' > 1, one of the following holds

— one has |A| < KPC; B
— for any linear subspace V. C Moy(k) of dimension < 3 such that V N SLy(k) is a
subgroup, one has

AP NV < K9 A

Ring:
1






fying |k| = D, any subspace V. C Ma(k) of dimension d € {2,3} such that V N SLa(k) is a
subgroup, then the group

LEMMA 6.17. There exists an absolute constant D such that for any finite field k satis-

{9 € SLa(k), gVg~' =V}
is a strict subgroup of SLo(k).
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